The demand equation for a monopolistic firm’s product is 4p+q= 320, and the firm’s cost function is given by c = 0.1q2+ 10q+ 1500. Find the price that maximizes the firm’s profit. What is the firm’s profit?

Respuesta :

Answer:

price =100 and profit is $2000

Step-by-step explanation:

The demand equation for a monopolistic firm’s product is 4p+q= 320

Solve for p

[tex]4p+q= 320[/tex]

[tex]4p=-q+320[/tex], divide both sides by 4

[tex]p=-\frac{q}{4}+80[/tex]

Revenue function R= p times q

[tex]R=p \cdot q=-\frac{q^2}{4}+80q[/tex]

[tex]C= 0.1q^2+ 10q+ 1500[/tex]

Profit = Revenue - Cost

[tex]Profit=-\frac{q^2}{4}+80q-(0.1q^2+ 10q+ 1500)[/tex]

[tex]Profit P(q)=-0.35q^2+70q-1500[/tex]

to find maximum profit find out vertex

[tex]q=\frac{-b}{2a} =\frac{-70}{2(0.35)} =100[/tex]

Plug in 100 for q inf P(q)

[tex]Profit P(100)=-0.35(100)^2+70(100)-1500=2000[/tex]

price =100 and profit is $2000

ACCESS MORE