Answer:
price =100 and profit is $2000
Step-by-step explanation:
The demand equation for a monopolistic firm’s product is 4p+q= 320
Solve for p
[tex]4p+q= 320[/tex]
[tex]4p=-q+320[/tex], divide both sides by 4
[tex]p=-\frac{q}{4}+80[/tex]
Revenue function R= p times q
[tex]R=p \cdot q=-\frac{q^2}{4}+80q[/tex]
[tex]C= 0.1q^2+ 10q+ 1500[/tex]
Profit = Revenue - Cost
[tex]Profit=-\frac{q^2}{4}+80q-(0.1q^2+ 10q+ 1500)[/tex]
[tex]Profit P(q)=-0.35q^2+70q-1500[/tex]
to find maximum profit find out vertex
[tex]q=\frac{-b}{2a} =\frac{-70}{2(0.35)} =100[/tex]
Plug in 100 for q inf P(q)
[tex]Profit P(100)=-0.35(100)^2+70(100)-1500=2000[/tex]
price =100 and profit is $2000