Answer:
16, 20, 24, 28, and 32
Step-by-step explanation:
Given:
The [tex]n^{th}[/tex] term of the sequence is given as:
[tex]a_n=a_{n-1}+4[/tex]
The first term is given as [tex]a_1=16[/tex]
We need to find the remaining 4 terms.
So, we plug in 2, 3, 4, 5 for 'n' and find the remaining 4 terms of the sequence.
For [tex]n=2[/tex]
[tex]a_2=a_{2-1}+4\\\\a_2=a_1+4\\\\a_2=16+4=20[/tex]
For [tex]n=3[/tex]
[tex]a_3=a_{3-1}+4\\\\a_3=a_2+4\\\\a_3=20+4=24[/tex]
For [tex]n=4[/tex]
[tex]a_4=a_{4-1}+4\\\\a_4=a_3+4\\\\a_4=24+4=28[/tex]
For [tex]n=5[/tex]
[tex]a_5=a_{5-1}+4\\\\a_5=a_4+4\\\\a_5=28+4=32[/tex]
Therefore, the first five terms of the given sequence are:
16, 20, 24, 28, and 32