Answer:
1.457881265 kgm²
0.02842 Nm/rad
0.13962 rad/s
Explanation:
M = Mass = 3.97 kg
R = Radius = 85.7 cm
[tex]\tau[/tex] = Torque = 0.0688 Nm
[tex]\theta[/tex] = Angle of rotation = 2.42 rad
Moment of inertia about the center of the disk is given by
[tex]I=\dfrac{1}{2}MR^2\\\Rightarrow I=\dfrac{1}{2}\times 3.97\times 0.857^2\\\Rightarrow I=1.457881265\ kgm^2[/tex]
The rotational inertia of the disk about the wire is 1.457881265 kgm²
Torque is given by
[tex]\tau=\kappa \theta\\\Rightarrow \kappa=\dfrac{\tau}{\theta}\\\Rightarrow \kappa=\dfrac{0.0688}{2.42}\\\Rightarrow \kappa=0.02842\ Nm/rad[/tex]
The torsion constant is 0.02842 Nm/rad
Time period is given by
[tex]T=2\pi\sqrt{\dfrac{I}{\kappa}}[/tex]
Angular frequency is given by
[tex]\omega=\dfrac{2\pi}{T}\\\Rightarrow \omega=\sqrt{\dfrac{\kappa}{I}}\\\Rightarrow \omega=\sqrt{\dfrac{0.02842}{1.457881265}}\\\Rightarrow \omega=0.13962\ rad/s[/tex]
The angular frequency of this torsion pendulum when it is set oscillating is 0.13962 rad/s