Answer:
[tex]cos(x)=\frac{\sqrt{5}}{5}[/tex]
Step-by-step explanation:
we have that
[tex]tan(x)=-2[/tex]
The angle x is in quadrant IV
That means ---> The value of cos(x) is positive and the value of sin(x) is negative
Remember that
[tex]cos^2(x)+sin^2(x)=1[/tex] ----> equation A
[tex]tan(x)=\frac{sin(x)}{cos(x)}[/tex]
so
[tex]-2=\frac{sin(x)}{cos(x)}[/tex]
[tex]sin(x)=-2cos(x)[/tex] ----> equation B
substitute equation B in equation A
[tex]cos^2(x)+(-2cos(x))^2=1[/tex]
solve for cos(x)
[tex]cos^2(x)+4cos^2(x)=1[/tex]
[tex]5cos^2(x)=1[/tex]
[tex]cos^2(x)=\frac{1}{5}[/tex]
square root both sides
[tex]cos(x)=\pm\frac{1}{\sqrt{5}}[/tex]
but remember that the value of cos(x) is positive (IV quadrant)
[tex]cos(x)=\frac{1}{\sqrt{5}}[/tex]
simplify
[tex]cos(x)=\frac{\sqrt{5}}{5}[/tex]