Answer:
We conclude that the mean lifetime of a brand of fluorescent bulbs is equal to 1500 hours.
Step-by-step explanation:
We are given the following in the question:
Population mean, μ = 1500 hours
Sample mean, [tex]\bar{x}[/tex] = 1480 hours
Sample size, n = 25
Alpha, α = 0.05
Sample standard deviation, s = 80 hours
First, we design the null and the alternate hypothesis
[tex]H_{0}: \mu = 1500\text{ hours}\\H_A: \mu < 1500\text{ hours}[/tex]
We use one-tailed(left) t test to perform this hypothesis.
Formula:
[tex]t_{stat} = \displaystyle\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}} }[/tex]
Putting all the values, we have
[tex]t_{stat} = \displaystyle\frac{1480-1500}{\frac{80}{\sqrt{25}}}= -1.25[/tex]
Now,
[tex]t_{critical} \text{ at 0.05 level of significance, 24 degree of freedom } = -1.71[/tex]
Since,
[tex]t_{stat} > t_{critical}[/tex]
We fail to reject the null hypothesis and accept the null hypothesis.
We conclude that the mean lifetime of a brand of fluorescent bulbs is equal to 1500 hours.