Answer: 0.0241
Step-by-step explanation:
The formula we use to find the margin of error :
[tex]E=z^*\sqrt{\dfrac{p(1-p)}{n}}[/tex]
, where z* = Critical value , n= Sample size and p = Sample proportion.
As per given , we have
n= 2400
Sample proportion of subjects showed improvement from the treatment:
[tex]p=\dfrac{720}{2400}=0.3[/tex]
Critical value for 99% confidence = z*= 2.576 (By z-table)
Now , the margin of error for the 99% confidence interval used to estimate the population proportion. :
[tex]E=(2.576)\sqrt{\dfrac{0.3(1-0.3)}{2400}}[/tex]
[tex]E=(2.576)\sqrt{0.0000875}[/tex]
[tex]E=(2.576)(0.00935414346693)[/tex]
[tex]E=0.0240962735708\approx0.0241[/tex] [Round to the four decimal places]
Hence, the margin of error for the 99% confidence interval used to estimate the population proportion. =0.0241