Given: LN⊥KM,KL≅ML Prove: ΔKLN≅ΔMLN
![Given LNKMKLML Prove ΔKLNΔMLN class=](https://us-static.z-dn.net/files/d4a/329479296c265a35e3be7829b9ce7245.png)
Answer:
The Proof is given below.
Step-by-step explanation:
Given:
LN⊥KM,
KL≅ML
To Prove:
ΔKLN≅ΔMLN
Proof:
In Δ KLN and Δ MLN
KL ≅ ML ....……….{Given i.e Hypotenuse }
LN ≅ LN …………..{Reflexive Property}
∠ LNK ≅ ∠ LNM ……….{ LN ⊥ KM i.e Measure of each angle is 90° given}
Δ KLN ≅ Δ MLN ….{By Hypotenuse Leg Theorem} ....Proved