Answer: 0.025
Step-by-step explanation:
The standard deviation for the sampling distribution of differences between the first sample proportion and the second sample proportion is given by :_
[tex]\sigma_{p_1-p_2}=\sqrt{\dfrac{p_1(1-p_1)}{n_1}+\dfrac{p_2(1-p_2)}{n_2}}[/tex]
, where [tex]p_1[/tex]= First population proportion.
[tex]p_2[/tex]= Second population proportion
[tex]n_1[/tex] = First sample size
[tex]n_2[/tex] = Second sample size
As per given , we have
[tex]p_1=0.15[/tex]
[tex]p_2=0.15[/tex]
[tex]n_1=400[/tex]
[tex]n_2=400[/tex]
Then , [tex]\sigma_{p_1-p_2}=\sqrt{\dfrac{0.15(1-0.15)}{400}+\dfrac{0.15(1-0.15)}{400}}[/tex]
[tex]\sigma_{p_1-p_2}=\sqrt{0.00031875+0.00031875}[/tex]
[tex]\sigma_{p_1-p_2}=\sqrt{0.0006375}[/tex]
[tex]\sigma_{p_1-p_2}=0.0252487623459\approx0.025[/tex]
Hence, the standard deviation for the sampling distribution of differences between the first sample proportion and the second sample proportion (used to calculate the z score) is 0.025 .