Answer:
Option 1 and 2.
Step-by-step explanation:
Consider he given inequality is
[tex]x^2 + 12 x+35\ge0[/tex]
Splitting the middle term we get
[tex]x^2 +7x+5x+35\ge0[/tex]
[tex]x(x+7)+5(x+7)\ge0[/tex]
[tex](x+5)(x+7)\ge0[/tex]
The related equation is
[tex](x+5)(x+7)=0[/tex]
Using zero product property we get
[tex]x+5=0\Rightarrow x=-5[/tex]
[tex]x+7=0\Rightarrow x=-7[/tex]
Draw number line and mark -5 and -7 on it.
Now the three intervals are (-∞ , -7], [-7,-5] and [-5,∞).
The set of possible test points for
⇒ (-∞ , -7] → -8, -10
⇒ [-7,-5] → -6
⇒ [-5,∞) → -4, 0, 4, 6
-8,-6,-4 and -10,-6,0 satisfies the given condition.
Therefore, the correct options are 1 and 2.