Answer:
a.
μ= 2.0
σ/√n= 1.664
b.
P(X < 2) = 0.05
c.
P(X < 120)= 1
Step-by-step explanation:
Hello!
The study variable is:
X: Number of accidents that occur in an intersection during a period of 52 weeks.
This variable has an unknown distribution but it is known that is mean is μ= 2.0 and its standard deviation is σ= 1.2.
The central limit theorem states that if your sample is big enough (n ≥ 30)even if the distribution of the study variable is unknown, you can aproximate the distribution of the sample mean to normal, symbolically:
X[bar]≈N(μ; σ²/n)
The mean is the same value as the variable
μ= 2.0
And it's variance
σ²/n= (1.2)²/52= 2.769
Standard deviation
σ/√n= √(σ²/n)= 1.664
b.
P(X < 2) = P(Z < [(2 -2)/1.66])= P(Z< 0) = 0.5
c.
P(X < 120) = P(Z < [(120-2)/1.66]) = P(Z < 71.08) ≅ 1
I hope it helps!