Respuesta :
Answer:
The center of the circle is c=50 and radius of the circle is [tex]r=\sqrt{3}[/tex]
Step-by-step explanation:
Given circle equation is
[tex]x^2-4x+y^2+14y=-50\hfill(1)[/tex]
Equation (1) can be written as [tex]x^2-4x+y^2+14y+50=0\hfill(2)[/tex]
we know that the equation of the circle is of the form
[tex]x^2+y^2+2gx+2fy+c=0\hfill(3)[/tex]
with centre (-g,-f) and radius=[tex]\sqrt{g^2+f^2-c}[/tex]
when, g,f and c are constants
Now comparing the (2) and (3) equations we get 2g=-4
[tex]g=\frac{-4}{2}[/tex]
[tex]g=-2[/tex]
[tex]2fy=14[/tex]
[tex]f=\frac{14}{2}[/tex]
[tex]f=7[/tex]
and [tex]c=50[/tex]
Now to find the centre and radius of the given circle equation, substituting the values of g,f,c in the formulae of centre and radius
centre=(-g,-f)
=(-(-2),-7)
centre=(2,7)
Radius=[tex]\sqrt{g^2+f^2-c}[/tex]
=[tex]\sqrt{(-2)^2+(7)^2-50}[/tex]
=[tex]\sqrt{4+49-50}[/tex]
=[tex]53-50[/tex]
Radius=[tex]\srqt{3}[/tex]
The center of the circle is c=50 and the radius of the circle equation [tex]r=\sqrt{3}[/tex]