Answer:
[tex]W_2=\sqrt{\frac{3}{5} }W_1[/tex]
Explanation:
For the first ball, the moment of inertia and the kinetic energy is:
[tex]I_1 =\frac{2}{5}MR^2[/tex]
[tex]K_1 = \frac{1}{2}IW_1^2[/tex]
So, replacing, we get that:
[tex]K_1 = \frac{1}{2}(\frac{2}{5}MR^2)W_1^2[/tex]
At the same way, the moment of inertia and kinetic energy for second ball is:
[tex]I_2 =\frac{2}{3}MR^2[/tex]
[tex]K_2 = \frac{1}{2}IW_2^2[/tex]
So:
[tex]K_2 = \frac{1}{2}(\frac{2}{3}MR^2)W_2^2[/tex]
Then, [tex]K_2[/tex] is equal to [tex]K_1[/tex], so:
[tex]K_2 = K_1[/tex]
[tex]\frac{1}{2}(\frac{2}{3}MR^2)W_2^2 = \frac{1}{2}(\frac{2}{5}MR^2)W_1^2[/tex]
[tex]\frac{1}{3}MR^2W_2^2 = \frac{1}{5}MR^2W_1^2[/tex]
[tex]\frac{1}{3}W_2^2 = \frac{1}{5}W_1^2[/tex]
Finally, solving for [tex]W_2[/tex], we get:
[tex]W_2=\sqrt{\frac{3}{5} }W_1[/tex]