Use special right triangles to solve for the value of x.
![Use special right triangles to solve for the value of x class=](https://us-static.z-dn.net/files/db1/3fbbe380772981313496412e721ae8c5.png)
Answer:
x = 7[tex]\sqrt{2}[/tex]
Step-by-step explanation:
Using the tangent ratio in the right triangle and the exact value
tan45° = [tex]\frac{1}{\sqrt{2} }[/tex]
tan45° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{7}{x}[/tex]
Multiply both sides by x
x × tan45° = 7, that is
x × [tex]\frac{1}{\sqrt{2} }[/tex] = 7
Multiply both sides by [tex]\sqrt{2}[/tex]
x = 7[tex]\sqrt{2}[/tex]
Answer: 7
Step-by-step explanation:
step 1- the opposite of the reference angle is 7 and you need to find the adjacent so you'd use tang(o/a).
step 2- equation. tan(48)/1=7/x
step 3- multiple. tan(48)x=7
step 4- solve for tan. tan(48)=1.20012724312.
step 5-substitute and solve. 1.20012724312x/1.20012724312=7/1.20012724312
step 6- divide . x= 7.
( round 1.20012724312)