Respuesta :

Answer:

x = 7[tex]\sqrt{2}[/tex]

Step-by-step explanation:

Using the tangent ratio in the right triangle and the exact value

tan45° = [tex]\frac{1}{\sqrt{2} }[/tex]

tan45° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{7}{x}[/tex]

Multiply both sides by x

x × tan45° = 7, that is

x × [tex]\frac{1}{\sqrt{2} }[/tex] = 7

Multiply both sides by [tex]\sqrt{2}[/tex]

x = 7[tex]\sqrt{2}[/tex]

Answer: 7

Step-by-step explanation:

step 1- the opposite of the reference angle is 7 and you need to find the adjacent so you'd use tang(o/a).

step 2- equation.  tan(48)/1=7/x

step 3- multiple. tan(48)x=7

step 4- solve for tan. tan(48)=1.20012724312.

step 5-substitute and solve. 1.20012724312x/1.20012724312=7/1.20012724312

step 6- divide . x= 7.

( round 1.20012724312)