Respuesta :
Answer:
a) Two tailed test
Null hypothesis:[tex]p=0.217[/tex]
Alternative hypothesis:[tex]p \neq 0.217[/tex]
b) [tex]p_v =2*P(Z>2.17)=0.03[/tex]
c) If we compare the p value obtained and the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis.
We Fail to reject the null hypothesis H0
Step-by-step explanation:
Data given and notation
n represent the random sample taken
X represent the outcomes desired in the sample
[tex]\hat p[/tex] estimated proportion of interest
[tex]p_o[/tex] is the value that we want to test
[tex]\alpha=0.01[/tex] represent the significance level
Confidence=99% or 0.99
z would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value (variable of interest)
Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the proportion is 0.217 or no:
a. Identify the hypothesis test as being two-tailed, left-tailed, or right-tailed.
Two tailed test
Null hypothesis:[tex]p=0.217[/tex]
Alternative hypothesis:[tex]p \neq 0.217[/tex]
When we conduct a proportion test we need to use the z statisitc, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Calculate the statistic
For this case the calculated value is given z =2.17
Statistical decision
It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.
b. Find the P-value
The significance level provided [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.
Since is a bilateral test the p value would be:
[tex]p_v =2*P(Z>2.17)=0.03[/tex]
c. Using a significance level of alphaαequals=0.01, should we reject Upper H 0 or should we fail to reject Upper H 0?
If we compare the p value obtained and the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis.
We Fail to reject the null hypothesis H0