Answer:
0.6915 is the probability that it will take more than 4 hours to process the orders of 100 people.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 2.5 minutes
Standard Deviation, σ = 2 minutes
Since the sample size is large, by central limit theorem, the distribution of sample means is approximately normal.
[tex]P(\sum x_{i} > 4)\\P(\sum x_i > 4\times 60\text{ minutes})\\\\P(\displaystyle\frac{1}{100}\sum x_i > \frac{4\times 60}{100}\text{ minutes})\\\\P(\bar{x} > 2.4)[/tex]
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\frac{\sigma}{\sqrt{n}}}[/tex]
P(it will take more than 4 hours to process the orders of 100 people)
P(x > 2.4)
[tex]P( x > 2.4) = P( z > \displaystyle\frac{2.4-2.5}{\frac{2}{\sqrt{100}}}) = P(z > -0.5)[/tex]
Calculation the value from standard normal z table, we have, [tex]P(x > 2.4) = 1 - 0.3085 = 0.6915= 69.15\%[/tex]
0.6915 is the probability that it will take more than 4 hours to process the orders of 100 people.