Respuesta :
Answer:
a) The parameter of interest is p who represent the proportion of graduates from this university who found a job within one year after graduating, and the estimated value is:
[tex]\hat p=\frac{348}{400}=0.87[/tex]
b) [tex]np=400*0.87=348>10[/tex]
[tex]n(1-p)=400(1-0.87)=52>10[/tex]
So both conditions are satisifed and we can construct the confidence interval.
c) The 95% confidence interval would be given (0.837;0.903).
We are confident (95%) that that the true proportion of graduates that found jobs is between 0.837 and 0.903
d) On this case that the 95% of the selected random samples will produce a 95% confidence interval that includes the true proportion of interest.
e) The 99% confidence interval would be given (0.827;0.913).
We are confident (99%) that that the true proportion of graduates that found jobs is between 0.827 and 0.913
f) The width for the 95% interval is 0.903-0.837=0.066, and for the 99% interval 0.913-0.827=0.086. And we see that the 99% is wider since we have more confidence that the true parameter of interest would be on the range provided.
Step-by-step explanation:
Data given and notation
n=400 represent the random sample taken
X=348 represent the number of graduates that found jobs in the sample
[tex]\hat p=\frac{348}{400}=0.87[/tex] estimated proportion of graduates that found jobs
[tex]\alpha[/tex] represent the significance level
z would represent the statistic to calculate the confidence interval
p= population proportion of graduates that found jobs
(a) Describe the population parameter of interest. What is the value of the point estimate of this parameter?
The parameter of interest is p who represent the proportion of graduates from this university who found a job within one year after graduating, and the estimated value is:
[tex]\hat p=\frac{348}{400}=0.87[/tex]
(b) Check if the conditions for constructing a confidence interval based on these data are met.
[tex]np=400*0.87=348>10[/tex]
[tex]n(1-p)=400(1-0.87)=52>10[/tex]
So both conditions are satisifed and we can construct the confidence interval.
(c) Calculate a 95% confidence interval for the proportion of graduates who found a job within one year of completing their undergraduate degree at this university, and interpret it in the context of the data.
The confidence interval would be given by this formula
[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
For the 95% confidence interval the value of [tex]\alpha=1-0.95=0.05[/tex] and [tex]\alpha/2=0.025[/tex], with that value we can find the quantile required for the interval in the normal standard distribution.
[tex]z_{\alpha/2}=1.96[/tex]
And replacing into the confidence interval formula we got:
[tex]0.87 - 1.96 \sqrt{\frac{0.87(1-0.87)}{400}}=0.837[/tex]
[tex]0.87 + 1.96 \sqrt{\frac{0.87(1-0.87)}{400}}=0.903[/tex]
And the 95% confidence interval would be given (0.837;0.903).
We are confident (95%) that that the true proportion of graduates that found jobs is between 0.837 and 0.903
(d) What does "95% confidence" mean?
On this case that the 95% of the selected random samples will produce a 95% confidence interval that includes the true proportion of interest.
(e) Now calculate a 99% confidence interval for the same parameter and interpret it in the context of the data
For the 99% confidence interval the value of [tex]\alpha=1-0.99=0.01[/tex] and [tex]\alpha/2=0.005[/tex], with that value we can find the quantile required for the interval in the normal standard distribution.
[tex]z_{\alpha/2}=2.58[/tex]
And replacing into the confidence interval formula we got:
[tex]0.87 - 2.58 \sqrt{\frac{0.87(1-0.87)}{400}}=0.827[/tex]
[tex]0.87 + 2.58 \sqrt{\frac{0.87(1-0.87)}{400}}=0.913[/tex]
And the 99% confidence interval would be given (0.827;0.913).
We are confident (99%) that that the true proportion of graduates that found jobs is between 0.827 and 0.913
(f) Compare the widths of the 95% and 99% confidence intervals. Which one is wider?
The width for the 95% interval is 0.903-0.837=0.066, and for the 99% interval 0.913-0.827=0.086. And we see that the 99% is wider since we have more confidence that the true parameter of interest would be on the range provided.