Answer:
15,4g of ice
Explanation:
The dissolution of HNO₃ increases the temperature of the solution thus:
Q = -C×m×ΔT (1)
Where Q is heat produced:
Q = -33 kJ/mol×(0,0130L×14,0M) = -6,00kJ
C is molar heat capacity of solution: 80,8 J/mol°C
m are moles of solution ≈ moles of water = 100mL≡100g×(1mol/18g) = 5,56 moles
And ΔT is final temperature - Initial temperature (X-25°C)
Replacing in (1):
-6000J = -80,8J/mol°C×5,56mol×(X-25°C)
13,4 = X-25°C
X = 38,4°C
Knowing that you want to return the temperature of the system to 25°C, the ice must to absorb 6000J of energy (In the fussion process and increasing each temperature until equilibrium) produced in the dissolution of HNO₃:
6000J = ΔH°fus×X + C×X×ΔT
-Where X are moles of ice-
Replacing:
6000J = 6010J/mol×X + 75,3J/mol°C×X×(38,4°C-25°C)
6000J = 6010J×X + 1006J×X
0,855 = moles of X
In grams:
0,855 moles×(18g/1mol)= 15,4g of ice
I hope it helps!