From the definition we have that the Torque corresponds to the Multiplication between the Force (or its respective component) and the radius of distance of the Force to the inertial turning point.
Mathematically this can be expressed,
[tex]\tau = F \times d[/tex]
Where,
F = Perpendicular component of force
d = distance from pivot point
The total sum of the torques would be equivalent to
[tex]\tau_{net} = \tau_1 +\tau_2[/tex]
According to the values given, torque 1 and 2 would be given by
[tex]\tau_1 = 6*1.2 = 7.2N\cdot m (+)[/tex]
[tex]\tau_2 = -5.2sin(30) = -7.8N\cdot m (-)[/tex]
Therefore the net Torque is
[tex]\tau_{net} = \tau_1+\tau_2[/tex]
[tex]\tau_{net} = 7.2-7.8[/tex]
[tex]\tau_{net} = -0.6N\cdot m[/tex]
Therefore the net torque about the pivot is -0.6Nm