Answer:
6 of the vasescan be arranged in 332640 ways .
Step-by-step explanation:
Given:
Number of vases = 11
To find:
Ways can 6 of the vases be arranged in the display window= ?
Solution:
Let us use permutation to find the number of ways can 6 of the vases be arranged in the display window
So
11 position 6 = [tex]11P_6[/tex]
[tex]nP_r = \frac{n!}{(n-r)!}[/tex]
here we have
n= 11
r= 6
substituting the values,
[tex]11P_6 = \frac{11!}{(11-6)!}[/tex]
[tex]11P_6 = \frac{11!}{(5)!}[/tex]
[tex]11P_6 = \frac{11 \times 10 \times 9 \times 8\times 7 \times 6 \times 5 \times 4 \times 3 \times 2\times 1}{(5 \times 4 \times 3 \times 2\times 1)}[/tex]
[tex]11P_6 = 11 \times 10 \times 9 \times 8\times 7 \times 6[/tex]
[tex]11P_6 = 332640[/tex]