Answer:
a) [tex]l=143cm[/tex]
b) [tex]l=54cm[/tex]
c) [tex]m=1.46kg[/tex]
d) [tex]m=1.46kg[/tex]
Explanation:
The period is defined as:
[tex]T=\frac{2\pi}{\omega}(1)[/tex]
Here, [tex]\omega[/tex] is the natural frequency of the system.
In a pendulum is given by:
[tex]\omega=\sqrt{\frac{g}{l}}(2)[/tex]
Replacing (2) in (1) and solving for l:
[tex]T=2\pi\sqrt{\frac{l}{g}}\\T^2=4\pi^2\frac{l}{g}\\l=\frac{gT^2}{4\pi^2}[/tex]
a) On Earth:
[tex]l=\frac{9.8\frac{m}{s^2}(2.4s)^2}{4\pi^2}\\l=1.43m=143cm[/tex]
b) On Mars:
[tex]l=\frac{3.7\frac{m}{s^2}(2.4s)^2}{4\pi^2}\\l=0.54m=54cm[/tex]
In a mass-spring system, the natural frequency is:
[tex]\omega=\sqrt{\frac{k}{m}}(3)[/tex]
Replacing (3) in (1) and solving for m:
[tex]T=2\pi\sqrt{\frac{m}{k}}\\T^2=4\pi^2\frac{m}{k}\\m=\frac{kT^2}{4\pi^2}[/tex]
c) On Earth:
[tex]m=\frac{10\frac{N}{m}(2.4s)^2}{4\pi^2}\\m=1.46kg[/tex]
d) On Mars:
[tex]m=\frac{10\frac{N}{m}(2.4s)^2}{4\pi^2}\\m=1.46kg[/tex]