Answer:
- 59.4
Step-by-step explanation:
The given function is [tex]f(x) = 120(0.1)^{x}[/tex]
Therefore, at x = 0, [tex]f(0) = 120(0.1)^{0} = 120[/tex] and
at x = 2, [tex]f(2) = 120(0.1)^{2} = 1.2[/tex]
Hence, the average rate of change of the given function from x = 0 to x = 2 will be
[tex]\frac{f(2) - f(0)}{2 - 0}[/tex]
= [tex]\frac{1.2 - 120}{2 - 0}[/tex]
= - 59.4 (Answer)