Green's theorem says the circulation of [tex]\vec F[/tex] along the rectangle's border [tex]C[/tex] is equal to the integral of the curl of [tex]\vec F[/tex] over the rectangle's interior [tex]D[/tex].
Given [tex]\vec F(x,y)=2xy\,\vec\imath[/tex], its curl is the determinant
[tex]\det\begin{bmatrix}\frac\partial{\partial x}&\frac\partial{\partial y}\\2xy&0\end{bmatrix}=\dfrac{\partial(0)}{\partial x}-\dfrac{\partial(2xy)}{\partial y}=-2x[/tex]
So we have
[tex]\displaystyle\int_C\vec F\cdot\mathrm d\vec r=\iint_D-2x\,\mathrm dx\,\mathrm dy=-2\int_0^3\int_0^8x\,\mathrm dx\,\mathrm dy=\boxed{-192}[/tex]