Answer:
[tex]y=-\frac{5}{2}x+\frac{15}{2}[/tex]
or
[tex]y=-2.5x+7.5[/tex]
Step-by-step explanation:
step 1
Find the slope of the given line
we have
[tex]-2x+5y=6[/tex]
isolate the variable y
[tex]5y=2x+6[/tex]
[tex]y=\frac{2}{5}x+\frac{6}{5}[/tex]
so
The slope is [tex]m=\frac{2}{5}[/tex]
step 2
Find the slope of the perpendicular line to the given line
we know that
If two lines are perpendicular, then their slopes are opposite reciprocal (the product of their slopes is equal to -1)
so
[tex]m_1*m_2=-1[/tex]
we have
[tex]m_1=\frac{2}{5}[/tex]
so
[tex]m_2=-\frac{5}{2}[/tex] ----> slope of the perpendicular line
step 3
Find the equation of the line in point slope form
[tex]y-y1=m(x-x1)[/tex]
we have
[tex]m=-\frac{5}{2}[/tex]
[tex]point\ (3,0)[/tex] ----> x-intercept
substitute
[tex]y-0=-\frac{5}{2}(x-3)[/tex]
apply distributive property eight sides
[tex]y=-\frac{5}{2}x+\frac{15}{2}[/tex]
or
[tex]y=-2.5x+7.5[/tex]