Answer: 80% CI (15.9, 28.7).
Step-by-step explanation:
We have given that ,
Sample size : n = 12
Confidence interval : 80% = 0.80
Significance level : 1-0.80=0.20
Sample mean : [tex]\overline{x}[/tex]
Estimated standard error : SE = 4.7
Degree of freedom : df = n-1 =11
By t-distribution table , the critical t-value for df = 11 and significance lvel of 0.20 = [tex]t*=1.3634[/tex]
Then, the 80% confidence interval will be :
[tex]\overline{x}\pm t^*SE\\\\=22.3\pm (1.3634)(4.7)\\\\=22.3\pm6.40798\\\\ (22.3-6.40798,\ 22.3+6.40798)\\\\=(15.89202,\ 28.70798)\approx(15.9\ ,\ 28.7)[/tex]
Hence, the correct option is 80% CI (15.9, 28.7).