Respuesta :

Answer:

The value of  [tex]\frac{f}{g} (x)[/tex] is [tex]\dfrac{4x + 1}{x^{2} -5 }[/tex]

Step-by-step explanation:

Given as :

f(x) = 4 x + 1

g(x) = x² - 5

Let the value of [tex]\frac{f}{g} (x)[/tex] = A

So, According to question

[tex]\frac{f}{g} (x)[/tex]  = [tex]\dfrac{f(x)}{g(x)}[/tex]

Or, A = [tex]\dfrac{4x + 1}{x^{2} -5 }[/tex]

So, The value of  [tex]\frac{f}{g} (x)[/tex] = A =  [tex]\dfrac{4x + 1}{x^{2} -5 }[/tex]

Hence, The value of  [tex]\frac{f}{g} (x)[/tex] is [tex]\dfrac{4x + 1}{x^{2} -5 }[/tex] Answer

ACCESS MORE