Respuesta :
Answer:
[tex]f(n)=64(\frac{1}{4})^{n-1}[/tex]
Step-by-step explanation:
The given sequence is
64, 16, 4, 1
[tex]r_1=\dfrac{a_2}{a_1}=\dfrac{16}{64}=\dfrac{1}{4}[/tex]
[tex]r_2=\dfrac{a_3}{a_2}=\dfrac{4}{16}=\dfrac{1}{4}[/tex]
[tex]r_3=\dfrac{a_4}{a_3}=\dfrac{1}{4}[/tex]
It is a geometric series because it has a common ratio [tex]r_1=r_2=r_3=\dfrac{1}{4}[/tex].
First term is 64.
The explicit formula of a geometric series is
[tex]f(n)=ar^{n-1}[/tex]
where, a is first term and r is common ratio.
Substitute a=64 and r=1/4 in the above function.
[tex]f(n)=64(\frac{1}{4})^{n-1}[/tex]
Therefore, the required explicit formula is [tex]f(n)=64(\frac{1}{4})^{n-1}[/tex].