Respuesta :
Answer:
[tex]z=\frac{0.540-0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}=2.53[/tex]
[tex]p_v =P(Z>2.53)=0.0057[/tex]
So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 1% of significance the true proportion is not significantly higher than 0.5.
Step-by-step explanation:
1) Data given and notation
n=1000 represent the random sample taken
X=540 represent the people indicated that they would be willing to give up some personal time in order to make more money
[tex]\hat p=\frac{540}{1000}=0.54[/tex] estimated proportion of people indicated that they would be willing to give up some personal time in order to make more money
[tex]p_o=0.5[/tex] is the value that we want to test
[tex]\alpha=0.01[/tex] represent the significance level
Confidence=99% or 0.99
z would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the p value (variable of interest)
2) Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the majority of women age 22 to 35 who work full-time would be willing to give up some personal time for more money :
Null hypothesis:[tex]p\leq 0.5[/tex]
Alternative hypothesis:[tex]p > 0.5[/tex]
When we conduct a proportion test we need to use the z statistic, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Check for the assumptions that he sample must satisfy in order to apply the test
a)The random sample needs to be representative: On this case the problem no mention about it but we can assume it.
b) The sample needs to be large enough
[tex]np_o =100*0.5=500>10[/tex]
[tex]n(1-p_o)=1000*(1-0.5)=500>10[/tex]
3) Calculate the statistic
Since we have all the info requires we can replace in formula (1) like this:
[tex]z=\frac{0.540-0.5}{\sqrt{\frac{0.5(1-0.5)}{1000}}}=2.53[/tex]
4) Statistical decision
It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.
The significance level provided [tex]\alpha=0.01[/tex]. The next step would be calculate the p value for this test.
Since is a right tailed test the p value would be:
[tex]p_v =P(Z>2.53)=0.0057[/tex]
So the p value obtained was a very low value and using the significance level given [tex]\alpha=0.01[/tex] we have [tex]p_v<\alpha[/tex] so we can conclude that we have enough evidence to reject the null hypothesis, and we can said that at 1% of significance the true proportion is not significantly higher than 0.5.