Answer: A. 14.02 to 15.98
Step-by-step explanation:
Let [tex]\mu[/tex] denotes the mean waiting time for population.
Given : Sample size : n= 64
Sample mean : [tex]\overline{x}=15[/tex] (minutes)
Population standard deviation = [tex]\sigma= 4[/tex]
Confidence level : 95%
By z-table , the critical values for 95% confidence = z*=1.96
Confidence interval for population mean : [tex]\overline{x}\pm z^* \dfrac{\sigma}{\sqrt{n}}[/tex]
The 95% confidence interval for the population mean of waiting times will be :
[tex]15\pm (1.96)\dfrac{4}{\sqrt{64}}[/tex]
[tex]15\pm (1.96)\dfrac{4}{8}[/tex]
[tex]15\pm (1.96)(0.5)[/tex]
[tex]15\pm 0.98[/tex]
[tex](15-0.98,\ 15+0.98)=(14.02,\ 15.98)[/tex]
Hence, the 5% confidence interval for the population mean of waiting times is 14.02 to 15.98.
Thus , the correct answer is Option A.