To solve this problem it is necessary to apply the concepts related to the principle of superposition, as well as to constructive interference. From the definition we know that this can be expressed mathematically as
[tex]sin\theta_m = \frac{m\lambda}{d}[/tex]
Where
m = Any integer which represent the number of repetition of spectrum
[tex]\lambda[/tex]= Wavelength
d = Distance between slits
From triangle (Watch image below)
[tex]tan\theta_1 = \frac{y_1}{L}[/tex]
[tex]tan\theta_1 = \frac{0.488}{1.64}[/tex]
[tex]\theta_1 = 16.57\°[/tex]
Replacing the angle at the first equation for m=1 we have
[tex]\lambda = d sin \theta_1[/tex]
Each of the distances (d) would be defined by
d = \frac{1}{5300} = 0.0001886
[tex]\lambda = (\frac{1}{5300}) sin(16.57)[/tex]
[tex]\lambda = 538nm[/tex]
Therefore the wavelength of the laser light is 538nm