Answer:
t = 1.07 seg
Explanation:
First we are going to solve the differential equation for the velocity:
[tex]\frac{dv}{dt} = -2v-32[/tex]
This is a differential equation of separable variables
[tex]\frac{dv}{-2v-32} = dt[/tex]
Multiplying by -1 to both sides of the equation
[tex]\frac{dv}{2v+32} = -dt[/tex]
We integrate the left side with respect to the velocity and the right side with respect to time
[tex]\frac{ln(2v+32)}{2} = -t +k[/tex]
where k is a integration constant
ln(2v+32) = -2t + k
[tex]2v +32 = e^{-2t+k}[/tex]
[tex]2v + 32 = ce^{-2t}[/tex]
[tex]v = ce^{-2t} -16[/tex]
We determine the constant c with the initial condition v(0) = -50
[tex]-50 = ce^{-2(0)} -16[/tex]
-50 + 16 = c
c = -34
Then
[tex]v(t) = -34e^{-27}-16[/tex]
When the velocity is -20 ft/s the time is:
[tex]-20 = -34e^{-2t}-16[/tex]
[tex]\frac{-4}{-34} = e^{-2t}[/tex]
[tex]ln(\frac{4}{34} ) = -2t[/tex]
t = 1.07 seg