Answer:
a) The electron mobility for this metal is 0.00455 m²V/s
b) There are 4.12 * 10^28 free electrons per cubic meter
Explanation:
Step 1: Data given
electrical resistivity of 3.3 * 10^−8(Ω⋅m)
A current of 25 A is passed through a specimen of this metal 15 mm thick.
A magnetic field of 0.95 tesla.
A Hall voltage of −2.4×10−7V is measured
Step 2: Calculate the conductivity
σ= 1/ ρ
⇒ with ρ = electrical resistivity of 3.3*10^−8Ω*m
σ = 1/3.3*10^−8
σ = 30303030.3 = 3*10^7/ Ω*m
step 3: Calculate the electron mobility
µe = Vdσ / IxBz
⇒ with µe = the electron mobility in m²V/s
⇒ V = voltage of 2.4*10^−7V
⇒ d = 0.015 meter
⇒ σ = the conductivity = 3*10^7/ Ω*m
⇒ Ix = the current = 25 A
⇒ Bz = magnetic field = 0.95 tesla
µe = (2.4 * 10^-7 * 0.015 * 3*10^7) / (25*0.95)
µe = 0.00455 m²V¨/s
The electron mobility is 0.00455 m²V¨/s
Step 4: Calculate the number of free electrons per cubic meter
n = σ/e*µe
⇒ e= the charge of an electron = 1.6 * 10^-19 Coulombs
⇒ σ = The conductivity = 3*10^7/ Ω*m
⇒ µe = The electron mobility = 0.00455 m²V¨/s
n = 3*10^7/ Ω*m /(1.6 * 10^-19 * 0.00455)
n = 4.12 * 10^28 / m³
There are 4.12 * 10^28 free electrons per cubic meter