Respuesta :
Answer:
[tex]\frac{25}{102}[/tex].
Step-by-step explanation:
Total number of cards in a deck = 52
number of black cards in a deck = 26
Find the probability that both cards are black (without replacement).
Therefore, both events are dependent.
The probability of first card is black = [tex]P_{1}=\frac{26}{52}[/tex]
the probability of second card is black = [tex]P_{2}=\frac{25}{51}[/tex]
[tex]P=\frac{26}{52}[/tex] × [tex]=\frac{25}{51}[/tex]
= [tex]\frac{1}{2}[/tex] × [tex]\frac{25}{51}[/tex]
= [tex]\frac{25}{102}[/tex]
The probability that both cards are black is [tex]\frac{25}{102}[/tex].
The probability that both cards picked without replacement are black is [tex] \frac {25}{102}[/tex]
Number of black cards in deck = 26
Total number of cards = 52
Recall :
Probability = (required outcome / Total possible outcomes)
Therefore,
Ist pick :
P(black card) = 26/52
Number of black cards left = 26 - 1 = 25
Total number of cards left = 52 - 1 = 51
2nd pick:
P(black card) = 25 / 51
Therefore, probability that both cards are black is ;
[tex]P(Both \: black) = \frac{26}{52} \times \frac{25}{51} = \frac {25}{102}[/tex]
Learn more :https://brainly.com/question/18153040