Answer:
(a) 57.17 N
(b) 146.21 N up the ramp
Explanation:
Assume the figure attached
(a)
The angle of ramp, [tex]\theta=tan ^{-1} \frac {2.5}{4.75}=27.75854^{\circ}\approx 27.76^{\circ}[/tex]
[tex]N=(32+48)*9.81*cos 27.76^{\circ}=694.4838 N[/tex]
m=32+48=80 kg
[tex]T+ \mu N= mg sin \theta[/tex]
[tex]T=mg sin \theta - \mu N= mg sin \theta- \mu mg cos \theta= mg (sin \theta - \mu cos \theta) [/tex] where [tex]\mu[/tex] is coefficient of kinetic friction
[tex]T=80*9.81(sin 27.76^{\circ} -0.444 cos 27.76^{\circ})=57.16698 N \approx 57.17 N[/tex]
(b)
Upper box doesn’t accelerate
[tex]F_r= mgsin\theta= 32*9.81sin 27.76^{\circ}=146.2071\approx 146.21 N[/tex]
The direction will be up the ramp