Respuesta :

Answer:

[tex]y=\frac{11}{5}[/tex]

Step-by-step explanation:

Given expression

[tex]\frac{1}{3}(y-2)-\frac{5}{6}(y+1)=\frac{3}{4}(y-3)-2[/tex]

To solve for [tex]y[/tex] for the given expression.

Solution:

We multiply each term with the least common multiple of the denominators of the fraction in order to remove fractions.

The multiples of the denominators are:

3 = 3,6,9,12,15

6 = 6,12

4 = 4,8,12

The least common multiple = 12.

Multiplying each term with 12.

[tex]12.\frac{1}{3}(y-2)-12.\frac{5}{6}(y+1)=12.\frac{3}{4}(y-3)-2(12)[/tex]

[tex]4(y-2)-10(y+1)=9(y-3)-24[/tex]

Using distribution.

[tex]4y-8-10y-10=9y-27-24[/tex]

Simplifying.

[tex]-6y-18=9y-51[/tex]

Adding [tex]6y[/tex] both sides.

[tex]-6y+6y-18=9y+6y-51[/tex]

[tex]-18=15y-51[/tex]

Adding 51 both sides.

[tex]-18+51=15y-51+51[/tex]

[tex]33=15y[/tex]

Dividing both sides by 15.

[tex]\frac{33}{15}=\frac{15y}{15}[/tex]

[tex]\frac{33}{15}=y[/tex]

Simplifying fractions.

[tex]\frac{11}{5}=y[/tex]

∴ [tex]y=\frac{11}{5}[/tex]  (Answer)