An average nerve axon is about 4x10-6m in radius, and the axoplasm that composes the interior of the axon has a resistivity of about 2.3 Ω ⋅m.

What is the resistance of just 2-cm length of this axon?

Provide your answer in mega-ohms (1 mega-ohm = 106 ohms or "millions of ohms").

(Note, this value is so large -- it corresponds to the resistance of tens of thousands of miles of the thinnest copper wire normally manufactured(!) -- that it explains why a nerve pulse traveling down an axon CANNOT simply be a current traveling along the axon. The voltage required to achieve a perceptible current in the axon would have to be gigantic! We will investigate how voltage pulses -- not current -- travel down axons in a future lab.)

Respuesta :

For the calculation of resistance there are generally two paths. The first is through Ohm's law and the second is through the relationship

[tex]R = \frac{pL}{A}[/tex]

Where

p = Specific resistance of material

L = Length

A = Area

The area of nerve axon is given as

[tex]A = \pi r^2[/tex]

[tex]A = \pi (5*10^{-6})^2[/tex]

[tex]A = 7.854*10^{-11}m^2[/tex]

The rest of values are given as

[tex]p= 2 \Omega\cdot m[/tex]

[tex]L = 2cm = 0.02m[/tex]

Therefore the resistance is

[tex]R = \frac{pL}{A}[/tex]

[tex]R = \frac{2*0.02}{7.854*10^{-11}}[/tex]

[tex]R = 509.3*10^6\Omega[/tex]

[tex]R = 509.3M\Omega[/tex]

ACCESS MORE