Respuesta :
Answer:
Move right by 4 units and down by 9 units
Step-by-step explanation:
The vertex of the parabolic function f(x) = x² is at (0,0)
Now, the parabolic function g(x) = - 8x + x² + 7 can be rearranged to vertex form.
g(x) = x² - 8x + 16 + 7 - 16
⇒ g(x) = (x - 4)² - 9
⇒ (x - 4)² = (y + 9) {If y = g(x)}
Therefore, the vertex of the parabolic function g(x) is at (4,-9).
Therefore, we have to move right by 4 units and down by 9 units to reach from vertex of f(x) to vertex of g(x). (Answer)
Using translation concepts, it is found that the translation that maps f(x) into g(x) is described by: right 4, down 9
What is a translation?
A translation is represented by a change in the function graph, according to operations such as multiplication or sum/subtraction in it's definition.
In this problem, function f(x) is defined by:
f(x) = x².
Function g(x) is defined by:
g(x) = x² - 8x + 7
Completing the squares, we have that g(x) can be written as:
g(x) = (x - 4)² - 9
Hence, the correct translation is:
right 4, down 9
More can be learned about translation concepts at https://brainly.com/question/4521517
#SPJ5