Answer:
(A) v2 = 17.7 m/s
(b) diameter = 1.73 mm
Explanation:
height of hole below the water level (h2) = 16 m
rate of flow (V) = 2.5 x 10^{-3} m^{3} / min = 4.17 x 10^{-5} m^{3}/s
(A) applying Bernoulli's theorem we can determine the speed of the water at the hole
[tex]\frac{p1}{ρg1} + \frac{V1^{2}}{2g} + h1 = \frac{p2}{ρg1} + \frac{V2^{2}}{2g} + h2[/tex]
where
p1 = pressure at the top surface
ρ = density of water
g = acceleration due to gravity = 9.8 m/s
v1 = velocity at the top
h1 = height at the top
p1 = pressure at the top surface
p1 = pressure at the hole
v2 = velocity at the hole
h2 = height of the hole from the top
[tex]\frac{patm}{ρg1} + \frac{(0)^{2}}{2g} + L = \frac{patm}{ρg1} + \frac{V2^{2}}{2g} + L-16[/tex]
[tex] 0 = \frac{V2^{2}}{2g} - 16[/tex]
v2 = [tex]\sqrt{2.g.16}[/tex]
v2 = [tex]\sqrt{2x9.8 x 16}[/tex]
v2 = 17.7 m/s
(B) area = rate of flow / velocity
area = [tex]\frac{4.17 x 10^{-5}}{17.7}[/tex]
area = [tex]2.35 x 10^{-6} m^{2}[/tex]
area = π([tex]\frac{diameter}{2} ^{2}[/tex])
diameter =2([tex]\sqrt{\frac{area}{π} }[/tex]
diameter =2([tex]\sqrt{\frac{2.35 x 10^{-6}}{π} }[/tex]
diameter = 1.73 x 10^{-3} m = 1.73 mm