Respuesta :
Answer:
A. We should reject H0.
C. At the 5% significance level, there is sufficient evidence to conclude that the students were not guessing.
Step-by-step explanation:
A chi-square goodness of fit test "determines if a sample data matches a population".
A chi-square test for independence "compares two variables in a contingency table to see if they are related. In a more general sense, it tests to see whether distributions of categorical variables differ from each another".
We need to conduct a chi square test in order to check the following hypothesis:
H0: The student answers have the uniform distribution.
H1: The student answers do not have the uniform distribution.
The level os significance assumed for this case is [tex]\alpha=0.05[/tex]
The statistic to check the hypothesis is given by:
[tex]\chi^2 =\sum_{i=1}^n \frac{(O_i -E_i)^2}{E_i}[/tex]
The table given represent the observed values, we just need to calculate the expected values with the following formula [tex]E_i = \frac{total col * total row}{grand total}[/tex]
On this case we assume that the calculated statistic is given by:
Statistic calculated
[tex]\chi^2_{calc}=13.167[/tex]
P value
Assuming the we have 2 rows and 4 columns on the contingency table.
Now we can calculate the degrees of freedom for the statistic given by:
[tex]df=(rows-1)(cols-1)=(2-1)(4-1)=3[/tex]
We can calculate the critical value with this formula in excel:" =CHISQ.INV(0.95,3)" On this case we got that the critical value is:
[tex]\chi^2_{crit}=7.815[/tex]
Since our calculated value is higher than the cirtical value we have enough evidence to reject the null hypothesis at the significance level of 5%.
And we can also calculate the p value given by:
[tex]p_v = P(\chi^2_{3} >13.167)=0.0043[/tex]
And we can find the p value using the following excel code:
"=1-CHISQ.DIST(13.167,3,TRUE)"
Since the p value is lower than the significance level we reject the null hypothesis at 5% of significance.
A. We should reject H0.
C. At the 5% significance level, there is sufficient evidence to conclude that the students were not guessing.
The reason why we select option C is because if we reject the null hypothesis of uniform distribution then we are rejecting the claim that the students are guessing.