Respuesta :
Answer:
[tex]\omega_{f}=1.634\ rad/s[/tex]
Explanation:
given,
diameter of merry - go - round = 2.40 m
moment of inertia = I = 356 kg∙m²
speed of the merry- go-round = 1.80 rad/s
mass of child = 25 kg
initial angular momentum of the system
[tex]L_i = I\omega_i [/tex]
[tex]L_i =356\times 1.80[/tex]
[tex]L_i =640.8\ kg.m^2/s[/tex]
final angular momentum of the system
[tex]L_f = (I_{disk}+mR^2)\omega_{f}[/tex]
[tex]L_f = (356 + 25\times 1.2^2)\omega_{f}[/tex]
[tex]L_f= (392)\omega_{f}[/tex]
from conservation of angular momentum
[tex]L_i = L_f[/tex]
[tex]640.8= (392)\omega_{f}[/tex]
[tex]\omega_{f}=1.634\ rad/s[/tex]
Answer:
2.3 rad/s
Explanation:
moment of inertia of disc, I = 356 kgm^2
mass of child, m = 25 kg
radius of disc, r = 2.4 m
initial angular velocity, ω = 1.8 rad/s
r' = 1.2 m
Let the new angular velocity is ω'
Angular momentum remains constant
I x ω = I' x ω'
(356 + 25 x 2.4 x 2.44 ) x 1.8 = ( 356 + 25 x 1.2 x 1.2) x ω'
900 = 392ω'
ω' = 2.3 rad/s