In a lab experiment, a student is trying to apply the conservation of momentum. Two identical balls, each with a mass of 1.0 kg, roll toward each other and collide. The velocity is measured before and after each collision. The collected data is shown below. A 5 column table with 3 rows. The first column is unlabeled with entries Trial 1, Trial 2, Trial 3, Trial 4. The second column is labeled Initial Velocity Ball A (meters per second) with entries positive 1, positive 0.5, positive 2, positive 0.5. The third column is labeled Initial Velocity Ball B (meters per second) with entries negative 2, negative 1.5, positive 1, negative 1. The third column is labeled Final Velocity Ball A (meters per second) with entries negative 2, negative 0.5, positive 1, positive 1.5. The fourth column is labeled Final Velocity Ball B (meters per second) with entries negative 1, negative 0.5, negative 2, negative 1.5. Which trial shows the conservation of momentum in a closed system? Trial 1 Trial 2 Trial 3 Trial 4

Respuesta :

Answer:

Second Trial satisfy principle of conservation of momentum

Explanation:

Given mass of ball A and ball B [tex]=\ 1.0\ Kg.[/tex]

Let mass of ball [tex]A[/tex] and [tex]B\ is\ m[/tex]  

Final velocity of ball [tex]A\ is\ v_1[/tex]

Final velocity of ball [tex]B\ is\ v_2[/tex]

initial velocity of ball [tex]A\ is\ u_1[/tex]

Initial velocity of ball [tex]B\ is\ u_2[/tex]

Momentum after collision [tex]=mv_1+mv_2[/tex]

Momentum before collision [tex]= mu_1+mu_2[/tex]

Conservation of momentum in a closed system states that, moment before collision should be equal to moment after collision.

Now, [tex]mu_1+mu_2=mv_1+mv_2[/tex]

Plugging each trial in this equation we get,

First Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(1)+1(-2)=1(-2)+1(-1)\\1-2=-2-1\\-1=-3[/tex]

momentum before collision [tex]\neq[/tex] moment after collision

Second Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1.5)=1(-.5)+1(-.5)\\.5-1.5=-.5-.5\\-1=-1[/tex]

moment before collision [tex]=[/tex] moment after collision

Third Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(2)+1(1)=1(1)+1(-2)\\2+1=1-2\\3=-1[/tex]

momentum before collision [tex]\neq[/tex] moment after collision

Fourth Trial

[tex]mu_1+mu_2=mv_1+mv_2\\1(.5)+1(-1)=1(1.5)+1(-1.5)\\.5-1=1.5-1.5\\-.5=0[/tex]

momentum before collision [tex]\neq[/tex] moment after collision

We can see only Trial- 2 shows the conservation of momentum in a closed system.

Answer: Trial 2

Explanation: