Answer:
The width of the rectangular strip is [tex]\frac{1}{3}\ mile[/tex].
Step-by-step explanation:
Given:
Length of the rectangular strip is, [tex]L=\frac{2}{5}\ mile[/tex]
Area of the strip is, [tex]A=\frac{2}{15}\ mi^2[/tex]
Let the width of the rectangular strip be 'w'.
We know that, the area of a rectangular figure is equal to the product of its length and width.
∴ Area of strip = Length × Width
⇒ [tex]A=L\times w[/tex]
[tex]\frac{2}{15}=\frac{2}{5}\times w\\\\w=\frac{2}{15}\div \frac{2}{5}\\\\w=\frac{2}{15}\times \frac{5}{2}\\\\w=\frac{5}{15}=\frac{1}{3}\ mile[/tex]
Therefore, the width of the rectangular strip is [tex]\frac{1}{3}\ mile[/tex].