Given P(X) = 0.6, P(Y) = 0.3, and P(Y|X) = 0.05, what are P(X and Y) and P(X or Y)?
Group of answer choices
A. P(X and Y) = 0.03, P(X or Y) = 0.87
B. P(X and Y) = 0.03, P(X or Y) = 0.35
C. P(X and Y) = 0.9, P(X or Y) = 0.87
D. P(X and Y) = 0.9, P(X or Y) = 0.35
Please help it I'd appreciate it alot

Respuesta :

frika

Answer:

[tex]P(X\cap Y)=0.03\\ \\P(X\cup Y)=0.87[/tex]

Step-by-step explanation:

1. Use formula

[tex]P(Y|X)=\dfrac{P(X\cap Y)}{P(X)}[/tex]

So,

[tex]0.05=\dfrac{P(X\cap Y)}{0.6}\Rightarrow P(X\cap Y)=0.05\cdot 0.6=0.03[/tex]

2. Use formula:

[tex]P(X\cup Y)=P(X)+P(Y)-P(X\cap Y)[/tex]

So,

[tex]P(X\cup Y)=0.6+0.3-0.03=0.9-0.03=0.87[/tex]

ACCESS MORE