Solve for x and y in the given the 45° - 45° - 90° triangle shown above. When applicable, simplify all radicals and show your work.

Solve for x and y in the given the 45 45 90 triangle shown above When applicable simplify all radicals and show your work class=

Respuesta :

Answer:

Therefore,

[tex]x=y= 4\sqrt{2}=5.6568\ units[/tex]

Step-by-step explanation:

Given:

Consider In Right Angle Triangle ABC

∠B = 90°

∠C = ∠A = 45°

AB = y

BC = x = adjacent side

AC = 8 = hypotenuse

To Find:

x = ?

y = ?

Solution:

In Right Angle Triangle ABC by Cosine Identity we have

[tex]\cos C = \dfrac{\textrm{side adjacent to angle C}}{Hypotenuse}\\[/tex]

substituting the above given values we get

[tex]\cos 45 = \dfrac{BC}{AC}=\dfrac{x}{8}[/tex]

[tex]\dfrac{1}{\sqrt{2} } =\dfrac{x}{8}\\\therefore x=\dfrac{8}{\sqrt{2} } \\Rationalizing\ we\ get\\\therefore x=\dfrac{8}{\sqrt{2}}\times \dfrac{\sqrt{2} }{\sqrt{2}}}\\\therefore x=4\sqrt{2}=4\times 1.4142=5.6568\ units[/tex]

As The triangle is 45 - 45 - 90

It is an Isosceles Right triangle

[tex]x=y[/tex]..... Isosceles Triangle property

[tex]\therefore y=4\sqrt{2}=4\times 1.4142=5.6568\ units[/tex]

Therefore,

[tex]x=y= 4\sqrt{2}=5.6568\ units[/tex]

Ver imagen inchu420
ACCESS MORE