Respuesta :
Answer:
n=500 represent the random sample taken
[tex]\hat p=0.12[/tex] estimated proportion of people that chose chocolate pie
[tex]\hat q =1-\hat p=1-0.12=0.88[/tex] represent the people that NOT chose chocolate pie
E=0.05 represent the error or margin of error given by the following formula:
[tex]ME=z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
p= true population proportion of people that chose chocolate pie
If the confidence level is 90 %, what is the value of alpha ?
[tex]\alpha=1-0.9 =0.1[/tex] and the value of [tex]\alpha/2 =0.05[/tex],
[tex]z_{\alpha/2}=-1.64[/tex] and [tex]z_{1-\alpha/2}=1.64[/tex]
[tex]ME=1.64 \sqrt{\frac{0.12(1-0.12)}{500}}=0.0238[/tex]
Step-by-step explanation:
Data given and notation
What values do ModifyingAbove p with caret , ModifyingAbove q with caret , n, E, and p represent?
n=500 represent the random sample taken
X represent the people that chose chocolate pie
[tex]\hat p=0.12[/tex] estimated proportion of people that chose chocolate pie
[tex]\hat q =1-\hat p=1-0.12=0.88[/tex] represent the people that NOT chose chocolate pie
E=0.05 represent the error or margin of error given by the following formula:
[tex]ME=z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
z would represent the quantile of the normal standard distribution
p= true population proportion of people that chose chocolate pie
The confidence interval for the population proportion is given by this formula :
[tex]\hat p \pm z_{\alpha/2} \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
If the confidence level is 90 %, what is the value of alpha ?
On this case the value for the significance would be [tex]\alpha=1-0.9 =0.1[/tex] and the value of [tex]\alpha/2 =0.05[/tex], we can find the quantiles of the normal standard distribution given by:
[tex]z_{\alpha/2}=-1.64[/tex] and [tex]z_{1-\alpha/2}=1.64[/tex]
And with the following excel codes:
"=NORM.INV(0.05,0,1)" "=NORM.INV(1-0.05,0,1)"
And we can find the margin of error like this:
[tex]ME=1.64 \sqrt{\frac{0.12(1-0.12)}{500}}=0.0238[/tex]