Respuesta :
Answer:
Consider the following explanation
Step-by-step explanation:
Completely Randomized Design :-
A completely randomized design is probably the simplest experimental design, in terms of data analysis and convenience. With this design, subjects are randomly assigned to treatments.
This completely randomized design relies on randomization to control for the effects of extraneous variables. The experimenter assumes that, on average, extraneous factors will affect treatment conditions equally; so any significant differences between conditions can fairly be attributed to the independent variable.
Double Blind Design :-
In an experiment, if subjects in the control group know that they are receiving a placebo, the placebo effect will be reduced or eliminated; and the placebo will not serve its intended control purpose.
Blinding is the practice of not telling subjects whether they are receiving a placebo. In this way, subjects in the control and treatment groups experience the placebo effect equally. Often, knowledge of which groups receive placebos is also kept from analysts who evaluate the experiment. This practice is called double blinding. It prevents the analysts from "spilling the beans" to subjects through subtle cues; and it assures that their evaluation is not tainted by awareness of actual treatment conditions.
Matched Pairs Design :-
A matched pairs design is a special case of a randomized block design. It can be used when the experiment has only two treatment conditions; and subjects can be grouped into pairs, based on some blocking variable. Then, within each pair, subjects are randomly assigned to different treatments.
Randomized Block Design :-
With a randomized block design, the experimenter divides subjects into subgroups called blocks, such that the variability within blocks is less than the variability between blocks. Then, subjects within each block are randomly assigned to treatment conditions. Compared to a completely randomized design, this design reduces variability within treatment conditions and potential confounding, producing a better estimate of treatment effects.
The experimental design that is given in the problem, is an example of a Randomized Block Design. Here, the different type of soils can be considered different blocks. In these blocks, the variability among within the blocks is minimum and between the blocks, it is maximum. Also, the treatments ( fertilizers ) are assigned randomly to the plts in each block (different soil type ).