Find the angle between the given vectors to the nearest tenth of a degree. u = <2, -4>, v = <3, -8>
3.0°
6.0°
-7.0°
16.0°

Respuesta :

Answer:

Angle between u an v i.e θ is 6°.

Step-by-step explanation:

Given:

[tex]u=2\vec {i}-4\vec{j}\\\\v=3\vec {i}-8\vec{j}[/tex]

To Find:

Angle between u an v i.e θ = ?

Solution:

If u bar and be  v bar are two vectors inclined at an angle θ then their scalar product is defined by,

[tex]\vec{u}.\vec{v}=|\vec{u}||\vec{v}|\cos \theta[/tex]

Substituting the given values we get

[tex](2\vec {i}-4\vec{j}).(3\vec {i}-8\vec{j})=\sqrt{2^{2}+(-4)^{2}}\times \sqrt{3^{2}+(-8)^{2}}\cos \theta[/tex]

[tex]2\times 3 + -4\times -8 =\sqrt{20}\times \sqrt{73}\cos \theta \\\\\cos \theta=\dfrac{\sqrt{1460}}{38} =\frac{38}{38.209}=0.9945\\ \\\therefore \theta=\cos^{-1}(0.9945)=6.01\°\\\\\therefore \theta=6\°[/tex]

Angle between u an v i.e θ is 6°.

ACCESS MORE