Answer: 0.9738
Step-by-step explanation:
We assume that the scores follows a normal distribution.
Let [tex]\overline{x}[/tex] denotes the class average .
As per given we have,
[tex]\mu=76\ \ \&\ \ \sigma=12[/tex]
Sample size : n= 12
The probability that a class of 15 students will have a class average greater than 70 on Professor Elderman’s final exam will be :
[tex]P(\overline{x}>70)=1-P(\overline{x}<70)\\\\=1-P(\dfrac{\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}<\dfrac{70-76}{\dfrac{12}{\sqrt{15}}})\\\\\approx1-P(z<-1.94)\ \ \ [\because\ z=\overline{x}-\mu}{\dfrac{\sigma}{\sqrt{n}}}]\\\\ =1-(1-P(z<1.94))\ \ [\because P(Z<-z)=1-P(Z<z)]\\\\=1-1+P(z<1.94)\\\\=0+0.9738=0.9738\ \ \text{[By z-table]}[/tex]
Hence, the correct answer = 0.9738