Answer:
The coordinates of point P is 6 , 1
Step-by-step explanation:
Given as :
The point P lies on directed line segment from points A and B
A = ( [tex]x_1[/tex] , [tex]y_1[/tex] ) = (2 ,3)
B = ( [tex]x_2[/tex] , [tex]y_2[/tex] ) = (8 , 0)
The partitions segments in the ratio = m : n = 22 : 11
Let the coordinate of point P = x , y
Now, According to question
x = [tex]\dfrac{m\times x_2 + n\times x_1}{m + n}[/tex]
y = [tex]\dfrac{m\times y_2 + n\times y_1}{m + n}[/tex]
Now
x = [tex]\dfrac{m\times x_2 + n\times x_1}{m + n}[/tex]
Or, x = [tex]\dfrac{22\times 8 + 11\times 2}{22 + 11}[/tex]
Or, x = [tex]\dfrac{176 + 22}{33}[/tex]
Or, x = [tex]\dfrac{198}{33}[/tex]
∴ x = 6
Again
y = [tex]\dfrac{m\times y_2 + n\times y_1}{m + n}[/tex]
Or, y = [tex]\dfrac{22\times 0 + 11\times 3}{22 + 11}[/tex]
Or, y = [tex]\dfrac{0 + 33}{33}[/tex]
Or, y = [tex]\dfrac{33}{33}[/tex]
∴ y = 1
So, The coordinates of point P = x , y = 6 , 1
Hence, The coordinates of point P is 6 , 1 Answer