Answer:b
Explanation:
Given
mass of block [tex]m=4 kg[/tex]
coefficient of static friction [tex]\mu =0.25 [/tex]
height of triangle is [tex]h=3 m[/tex]
[tex]F_{net}=mg\sin \theta -\mu _kmg\cos \theta [/tex]
[tex]a_{net}=g\sin \theta -\mu _kg\cos \theta [/tex]
[tex]a_{net}=9.8\sin 37-0.25\times 9.8\times \cos 37[/tex]
[tex]a_{net}=5.897-1.956=3.94 m/s^2[/tex]
here [tex]s=5 m[/tex]
[tex]v^2-u^2=2 a_{net}s[/tex]
[tex]v=\sqrt{2\times 3.94\times 5}[/tex]
[tex]v=6.27 m/s[/tex]
time taken to reach bottom of plane
[tex]v=u+at[/tex]
[tex]6.27=0+3.94\times t[/tex]
[tex]t=1.59 s\approx 1.6 s[/tex]