contestada

Calculate ΔGrxn at 298 K under the conditions shown below for the following reaction.
Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g)
ΔG° = -28.0 kJ
P(CO) = 1.4 atm, P(CO2) = 2.1 atm
ΔG°rxn = ?

Respuesta :

Answer : The value of [tex]\Delta G_{rxn}[/tex] is -24.9 kJ/mol

Explanation :

First we have to calculate the value of 'Q'.

The given balanced chemical reaction is,

[tex]Fe_2O_3(s)+3CO(g)\rightarrow 2Fe(s)+3CO_2(g)[/tex]

The expression for reaction quotient will be :

[tex]Q=\frac{(p_{CO_2})^3}{(p_{CO})^3}[/tex]

In this expression, only gaseous or aqueous states are includes and pure liquid or solid states are omitted.

Now put all the given values in this expression, we get

[tex]Q=\frac{(2.1)^3}{(1.4)^2}[/tex]

[tex]Q=3.375[/tex]

Now we have to calculate the value of [tex]\Delta G_{rxn}[/tex].

The formula used for [tex]\Delta G_{rxn}[/tex] is:

[tex]\Delta G_{rxn}=\Delta G^o+RT\ln Q[/tex]    ............(1)

where,

[tex]\Delta G_{rxn}[/tex] = Gibbs free energy for the reaction  = ?

[tex]\Delta G_^o[/tex] =  standard Gibbs free energy  = -28.0 kJ/mol

R = gas constant = [tex]8.314\times 10^{-3}kJ/mole.K[/tex]

T = temperature = 298 K

Q = reaction quotient = 3.375

Now put all the given values in the above formula 1, we get:

[tex]\Delta G_{rxn}=(-28.0kJ/mol)+[(8.314\times 10^{-3}kJ/mole.K)\times (298K)\times \ln (3.375)[/tex]

[tex]\Delta G_{rxn}=-24.9kJ/mol[/tex]

Therefore, the value of [tex]\Delta G_{rxn}[/tex] is -24.9 kJ/mol

The standard free energy change of the reaction is -25kJ/mol.

The perform the task we must first calculate Kp from the data provided as follows;

P(CO) = 1.4 atm

P(CO2) = 2.1 atm

Kp = (p.CO2)^3/(p.CO)^3

Kp = (2.1)^3/(1.4)^3

Kp = 9.3/2.7

Kp = 3.4

ΔG°rxn =ΔG° + RTlnKp

Where;

R = 8.314 J/Kmol

T =  298 K

ΔG°rxn = -28.0 kJ + (8.314 * 298 * ln 3.4) * 10^-3

ΔG°rxn = -25kJ/mol

Learn more about Kp: https://brainly.com/question/953809

ACCESS MORE